首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44770篇
  免费   5569篇
  国内免费   7153篇
化学   40941篇
晶体学   690篇
力学   1988篇
综合类   288篇
数学   3391篇
物理学   10194篇
  2024年   35篇
  2023年   568篇
  2022年   1010篇
  2021年   1431篇
  2020年   1937篇
  2019年   1658篇
  2018年   1482篇
  2017年   1789篇
  2016年   2115篇
  2015年   1956篇
  2014年   2316篇
  2013年   3809篇
  2012年   2833篇
  2011年   3079篇
  2010年   2595篇
  2009年   3001篇
  2008年   2812篇
  2007年   2809篇
  2006年   2558篇
  2005年   2302篇
  2004年   2349篇
  2003年   1835篇
  2002年   1967篇
  2001年   1273篇
  2000年   1040篇
  1999年   856篇
  1998年   680篇
  1997年   624篇
  1996年   626篇
  1995年   644篇
  1994年   582篇
  1993年   432篇
  1992年   373篇
  1991年   246篇
  1990年   199篇
  1989年   180篇
  1988年   197篇
  1987年   150篇
  1986年   109篇
  1985年   106篇
  1984年   96篇
  1983年   42篇
  1982年   87篇
  1981年   112篇
  1980年   121篇
  1979年   128篇
  1978年   95篇
  1977年   71篇
  1976年   66篇
  1973年   30篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
21.
In this paper, we present an approach of dynamic mesh adaptation for simulating complex 3‐dimensional incompressible moving‐boundary flows by immersed boundary methods. Tetrahedral meshes are adapted by a hierarchical refining/coarsening algorithm. Regular refinement is accomplished by dividing 1 tetrahedron into 8 subcells, and irregular refinement is only for eliminating the hanging points. Merging the 8 subcells obtained by regular refinement, the mesh is coarsened. With hierarchical refining/coarsening, mesh adaptivity can be achieved by adjusting the mesh only 1 time for each adaptation period. The level difference between 2 neighboring cells never exceeds 1, and the geometrical quality of mesh does not degrade as the level of adaptive mesh increases. A predictor‐corrector scheme is introduced to eliminate the phase lag between adapted mesh and unsteady solution. The error caused by each solution transferring from the old mesh to the new adapted one is small because most of the nodes on the 2 meshes are coincident. An immersed boundary method named local domain‐free discretization is employed to solve the flow equations. Several numerical experiments have been conducted for 3‐dimensional incompressible moving‐boundary flows. By using the present approach, the number of mesh nodes is reduced greatly while the accuracy of solution can be preserved.  相似文献   
22.
Field-effect transistors (FETs) are one of the most widely-used electronic sensors for continuous monitoring and detection of contaminants such as pharmaceuticals and endocrine-disrupting compounds at low concentrations. FETs have been successfully utilized for the rapid analysis of these environmental pollutants due to their advantageous material properties like the disposability, rapid responses and simplicity. This paper presented an up-to-date overview of applied strategies with different bio-based materials in order to enhance the analytical performances of the designed sensors. Comparison and discussion were made between characteristics of recently engineered FET bio-sensors used for the detection of famous and selected pharmaceutical compounds in the literature. The recent progress in environmental research applications, comments on interesting trends, current challenge for future research in endocrine-disrupting chemicals’ (EDCs) detection using FETs biosensors were highlighted.  相似文献   
23.
李悦  王博  朱晓丽  刘昆 《人工晶体学报》2021,50(11):2156-2163
通常采用以氢氧化物作为造孔剂,过渡金属硝酸盐或氯化物作为石墨化催化剂的传统两步法策略制备多孔石墨化碳材料。然而制备过程中多涉及有毒和腐蚀性试剂,且多步骤的过程耗时较长。本文以双氰胺为原料通过热缩聚反应得到g-C3N4,采用高铁酸钾为催化剂一步法实现g-C3N4的同步碳化-石墨化,并研究其光催化性能。与传统的两步法相比,该方法耗时少、效率高、无污染。与初始的g-C3N4材料相比,石墨化g-C3N4衍生碳质材料不仅显著改善了可见光的吸收,而且大大增强了光催化活性。研究了不同石墨化温度对g-C3N4衍生碳质材料在可见光下降解甲基橙溶液的影响。700 ℃下制备的衍生碳质材料的降解率为12.4 mg/g。光电化学测试结果表明,多孔g-C3N4衍生碳质材料的光生载流子密度、电荷分离和光电流(提高了5.4倍)均得到显著提高。因此,该简便、灵活方法为提高g-C3N4衍生碳质材料的吸附和光催化性能提供了一种有前景的、高效的途径。  相似文献   
24.
In this reports the facile and green synthesis of rutile-type titanium dioxide nanoparticles decorated graphene oxide nanocomposite via the ultrasonication process (frequency: 50 kHz, Power: 100 W/cm2 and Ultrasonic type: Ti-horn). Because, the sonochemical synthesis method is simple, non-explosive and harmless method than other conventional technique. Furthermore, the synthesized material was characterized by various analytical techniques including FESEM, EDX, XRD, EIS and electrochemical methods. Then, the synthesized TiO2 MPs@GOS composite was applied for the electrocatalytic detection of theophylline (TPL) using CV and amperometric (current-time) techniques. Captivatingly, the modified sensor has excellent electrocatalytic performance with the wider linear range from 0.02 to 209.6 µM towards the determination of theophylline and the LOD and sensitivity of the modified sensor was calculated as 13.26 nM and 1.183 μA·µM−1·cm−2, respectively. In addition, a selectivity, reproducibility and stability of the TiO2 MPs@GOS modified GCE were analyzed towards the determination of theophylline molecule. Finally, the real time application of TiO2 MPs@GOS modified theophylline sensor was established in serum and drug samples.  相似文献   
25.
ABSTRACT

Nano-polycrystalline diamond (NPD) with various grain sizes has been synthesized from glassy carbon at pressures 15–25?GPa and temperatures 1700–2300°C using multianvil apparatus. The minimum temperature for the synthesis of pure NPD, below which a small amount of compressed graphite was formed, significantly increased with pressure from ~1700°C at 15?GPa to ~1900°C at 25?GPa. The NPD having grain sizes less than ~50?nm was synthesized at temperatures below ~2000°C at 15?GPa and ~2300°C at 25?GPa, above which significant grain growth was observed. The grain size of NPD decreases with increasing pressure and decreasing temperature, and the pure NPD with grain sizes less than 10?nm is obtained in a limited temperature range around 1800–2000°C, depending on pressure. The pure NPD from glassy carbon is highly transparent and exhibits a granular nano-texture, whose grain size is tunable by selecting adequate pressure and temperature conditions.  相似文献   
26.
The dinuclear zinc complex reported by us is to date the most active zinc catalyst for the co‐polymerization of cyclohexene oxide (CHO) and carbon dioxide. However, co‐polymerization experiments with propylene oxide (PO) and CO2 revealed surprisingly low conversions. Within this work, we focused on clarification of this behavior through experimental results and quantum chemical studies. The combination of both results indicated the formation of an energetically highly stable intermediate in the presence of propylene oxide and carbon dioxide. A similar species in the case of cyclohexene oxide/CO2 co‐polymerization was not stable enough to deactivate the catalyst due to steric repulsion.  相似文献   
27.
In this paper, we study the local linear convergence properties of a versatile class of Primal–Dual splitting methods for minimizing composite non-smooth convex optimization problems. Under the assumption that the non-smooth components of the problem are partly smooth relative to smooth manifolds, we present a unified local convergence analysis framework for these methods. More precisely, in our framework, we first show that (i) the sequences generated by Primal–Dual splitting methods identify a pair of primal and dual smooth manifolds in a finite number of iterations, and then (ii) enter a local linear convergence regime, which is characterized based on the structure of the underlying active smooth manifolds. We also show how our results for Primal–Dual splitting can be specialized to cover existing ones on Forward–Backward splitting and Douglas–Rachford splitting/ADMM (alternating direction methods of multipliers). Moreover, based on these obtained local convergence analysis result, several practical acceleration techniques are discussed. To exemplify the usefulness of the obtained result, we consider several concrete numerical experiments arising from fields including signal/image processing, inverse problems and machine learning. The demonstration not only verifies the local linear convergence behaviour of Primal–Dual splitting methods, but also the insights on how to accelerate them in practice.  相似文献   
28.
29.
30.
As a new type of quantum dots (QDs), hexagonal boron nitride quantum dots (BNQDs) exhibit promising potential in the applications of disease diagnosis, fluorescence imaging, biosensing, metal ion detection, and so on, because of their remarkable chemical stability, excellent biocompatibility, low cytotoxicity, and outstanding photoluminescence properties. However, the large-scale fabrication of homogeneous BNQDs still remains challenging. In this article, the properties and common fabrication methods of BNQDs are summarized based on the recent research progress. Then, the corresponding yields, morphologies, and fabrication mechanisms of these as-obtained BNQDs are discussed in detail. Moreover, the applications of these as-obtained BNQDs in different fields are also discussed. This article is expected to inspire new methods and improvements to achieve large-scale fabrication of homogeneous BNQDs, which will enable their practical applications in future.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号